STIGMASTA-5,24(28)-DIENE-3 β -O- α -L-RHAMNOSIDE FROM CLEOME VISCOSA

SANTOSH K. SRIVASTAVA

Department of Chemistry, University of Saugar, Sagar (M.P.) 470 003, India

(Revised received 14 February 1980)

Key Word Index — Cleome viscosa; Capparidiaceae; whole plant; new saponin; stigmasta-5,24(28)-diene-3β-O-α-L-rhamnoside.

INTRODUCTION

Cleome viscosa [1,2] is a member of a genus of plants used especially in the indigenous system of medicine. Previous work on this plant was reported by Srivastava et al. [3,4]. In the present paper I have reported the isolation of a new saponin identified as stigmasta-5.24(28)-diene-3 β -O- α -L-rhamnoside (1) on the basis of chemical and spectral evidence.

RESULTS AND DISCUSSION

The saponin, mp 60–62, gave a copious lather when shaken with H₂O, haemolysed red blood cells and was toxic to fish. On acid hydrolysis, the saponin afforded a genin, mp 122–124°, $C_{29}H_{48}O$ (M⁺ at m/e 412), $[\alpha]_D^{25} - 38^\circ$ (in CHCl₃) and a sugar L-rhamnose (co-PPC and osazone). The IR spectrum (KBr, cm⁻¹) showed absorptions at 3420 (OH group); 2952, 1650, 1575 and 800 (strong) ($\Delta^{24(28)}$ ethylidene sterol) [5,6]; 1475, 1390 and 955 (iso-propyl group). The ¹H NMR spectrum exhibited signals (CDCl₃, TMS) at δ 0.81 (s, Me-19); 0.99 (fused d, Me-21, 26 and 27); 1.02 (s, Me-18); 1.55 (d, Me-29); 2.81 (septet, H-25); and 5.02 (q, H-28). The MS of the genin showed mass fragments at m/e 412 (M⁺, parent peak): 397 (M⁺ – Me); 394 (M⁺ $- H_2O$); 369 (M⁺ $- C_3H_7$); 314 (M⁺ $- C_7H_{14}$); 299 $[M^{+} - (C_{7}H_{14} + Me)];$ 287 $[M^{+} - (Me + C_{8}H_{15} - H)];$ 273 $(M^{+} - side chain)$ i.e. $(M^{+} - C_{10}H_{19});$ 257 [larger ion, $M^+ - (C_{11}H_{21} + 2H)$] and 253 [smaller ion, M^{+} – (side chain + 2H + H₂O)]. The genin formed a monoacetate, mp 118–119° [$C_{31}H_{50}O_2$ (M⁺ at m/e 454), [α]_D²⁵ – 45° (in CHCl₃), IR v_{max}^{KBr} cm⁻¹: 1720; ¹H NMR, δ at 2.09 ($-COCH_3$)], a benzoate, mp 118–20° [$C_{36}H_{52}O_2$

(M⁺ at *m/e* 516), [α]_D²⁵ – 16° (in CHCl₃)] and a digitonide, mp 233–235° showing the presence of a OH function in the molecule. The genin on Oppenauer oxidation gave stigmasta-4,24(28)-dien-3-one (α , β unsaturated ketone) mp 93–94° indicating the presence of Δ^5 -3 β -OH grouping [5]. Ozonolysis of the genin gave acetaldehyde which located the second double bond probably at the $\Delta^{24(28)}$ -position [6]. On partial hydrogenation the genin afforded two products identified as a mixture of sitosterol [7] and clionasterol [8], (mp. mmp and co-TLC) mp 133, [α]_D²⁵ – 30° (in CHCl₃). From the above discussion it is clear that the genin was stigmasta-5,24(28)-dien-3 β -ol which was further confirmed by co-chromatography with an authentic sample [9].

Periodate oxidation showed the consumption of 2.01 mol of periodate with the liberation of 1.01 mol of HCO_2H per 1 mol of the saponin suggesting the presence of one unit of rhamnose in pyranose form. Enzymatic hydrolysis proved the α -linkage between the genin and L-rhamnose. Thus the saponin was stigmasta-5,24(28)-diene-3 β -O- α -L-rhamnopyranoside (1).

EXPERIMENTAL

Isolation and purification. Air-dried and powdered whole plant of C.viscosa (2 kg) procured from the United Chemicals and Allied Products. Calcutta (India) was extracted with EtOH under reflux for 160 hr. The ethanolic extract (2.5 l.) was coned (100 ml) under red. pres. It was segregated into H_2O soluble and insoluble material by pouring into H_2O (500 ml.). The H_2O soluble portion was coned and subjected to liquid liquid extraction with C_0H_0 . The C_0H_0 extract was chromatographed on a neutral Al_2O_3

Short Reports

column (CHCl₃–C₆H₆; 5:5) to afford a white amorphous residue (1.2 g) which was crystallized from CHCl₃–MeOH (2:3) into white needles, mp 60–62°, homogeneous on TLC [R_f 0.52 (in CHCl₃–MeOH; 9.5:0.5) and 0.34 in BAW (4:1:5)]; $\lambda_{\rm max}^{\rm EiOH}$ 205 nm. (Found: C, 75.25; H, 10.60: C₃₅H₅₈O₅ requires; C, 75.26; H, 10.39 %).

Acid hydrolysis of saponin. The saponin (1.0 g) was refluxed with 7% EtOH-H₂SO₄ (100 ml) for 5 hr, concd, diluted with H₂O and cooled to give genin as a white amorphous solid (800 mg) which was crystallized as colourless needles with CHCl₃-MeOH, mp 122–124°. The aq. hydrolysate after neutralization (BaCO₃) was concd to a syrup, which was identified as L-rhamnose by the usual methods. Quantitative analysis [10] revealed the presence of 1 mol of rhamnose.

Study of the genin. The genin (800 mg) was crystallized as colourless needles from CHCl₃-MeOH (9:1), $\lambda_{\rm max}^{\rm EIOH}$ 203 nm. (Found: C, 84.42; H, 11.66. C₂₉H₄₈O requires: C, 84.46; H, 11.65%). The genin (100 mg) was acetylated with Ac₂O (2 ml) and C₅H₅N (5 ml) by the usual process and the percentage in the acetylated product was determined as in ref. [11,12]. (Found: C, 81.90; H, 11.00; OAc, 9.45. C₃₁H₅₀O₂ requires: C, 81.93; H, 11.00; 1 × OAc, 9.44%). M⁺ at m/e 454. The genin (100 mg) was benzoylated with PhCOCl (2 ml) and C₅H₅N (5 ml) in the usual manner. (Found: C, 83.70; H, 10.06; C₃₆H₅₂O₂ required; C, 83.72; H, 10.07%). M⁺ at m/e 516.

Oppenauer oxidation of the genin. The genin (100 mg) in dry Me_2CO (5 ml) was mixed with [(Me₃)₃CO]₃Al (120 mg) in C₆H₆ (5 ml) and refluxed for 20 hr. The reaction mixture was washed with $2NH_2SO_4$, H_2O and $NaHCO_3$, respectively. The product was crystallized as colourless plates with Me_2CO , mp 93–95°, [α] $_2^{15}$ + 77° (in CHCl₃) which was identified as stigmasta-4,24(28)-dien-3-one (60 mg). (Found: C, 84.88; H, 11.20, $C_{29}H_{46}O$ requires: C, 84.87; H, 11.21%).

Ozonization of the genin. The genin (200 mg) in glacial HOAc (10 ml) was ozonized for 2 hr at an O_3 conen of ca 2%, the exit gases being led through 20 ml H₂O. The reaction mixture was passed through a Si gel column, 20 ml distillate were collected and a soln of 100 mg recrystallized p-NO₂-Ph-NHNH₂ in 10 ml 50% HOAc was gradually added. The hydrazone crystallized out immediately

and was recrystallized from EtOH, mp 127–129°. It was identified as acetaldehyde-p-nitrophenyl-hydrazone (TLC and mmp). (Found: C, 53.62; H, 5.03; N, 23.45. $C_8H_9N_3O_2$ requires: C, 53.63; H, 5.02; N, 23.46%).

2511

Periodate oxidation of the saponin. An EtOH soln (5%) of the saponin (20 mg) and 0.1 M NaIO₄ (25 ml) were mixed and allowed to stand in the dark for 48 hr. A blank was also run simultaneously. The amounts of periodate consumed and HCO₂H liberated were estimated [13] and corresponded to 2.01 and 1.01 mol respectively per 1 mol of the saponin.

Acknowledgement—I am grateful to the Director, CIBA Research Centre, Bombay (India) for spectra and microanalysis of the compound.

REFERENCES

- Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) Glossary of Indian Medicinal plants. p. 70. CSIR, New Delhi (India).
- Kirtikar, K. R. and Basu, B. D. (1935) Indian Medicinal Plants Vol. 1, p. 183. Lalit Mohan Basu, Allahabad (India).
- Srivastava, S. K. and Srivastava, S. D. (1979) Curr. Sci. 48, 430.
- Srivastava, S. K., Chauhan, J. S. and Srivastava, S. D. (1980) *Phytochemistry* 18, 2057.
- Idler, D. R., Nicksie, S. W., Johnson, D. R., Meloche, U. M., Schuette, H. A. and Bauman, C. A. (1953) J. Am. Chem. Soc. 75, 1712.
- 6. Schrew, W. (1968) Tetrahedron Letters 2443.
- Hex, D. H., Honeyman, J. and Peal, W. J. (1950) J. Chem. Soc. 2881.
- 8. Barton, D. H. R. (1946) J. Chem. Soc. 512.
- Heilbron, I. and Bunburry, H. M. (1953) Dictionary of Organic Compounds Vol. 2, p. 568. Eyre & Spottiswoode, London.
- 10. Hirst, E. L. and Jones, J. K. N. (1949) J. Chem. Soc. 1959.
- 11. Wisenberger, (1947) Mikrochemie 33, 51.
- 12. Belcher, R. and Godbert, A. L. (1936) Semimicroquantitative Organic Analysis, p. 168. Longman, New York.
- 13. Hirst, E. L. and Jones, J. K. N. (1949) J. Chem. Soc. 2157.